Star Formation, Supernovae Feedback and the Angular Momentum Problem in Numerical Cdm Cosmogony: Half Way There?
نویسندگان
چکیده
We present a smoothed particle hydrodynamic (SPH) simulation that reproduces a galaxy that is a moderate facsimile of those observed. The primary failing point of previous simulations of disk formation, namely excessive transport of angular momentum from gas to dark matter, is ameliorated by the inclusion of a supernova feedback algorithm that allows energy to persist in the model ISM for a period corresponding to the lifetime of stellar associations. The inclusion of feedback leads to a disk at a redshift z = 0.52, with a specific angular momentum content within 10% of the value required to fit observations. An exponential fit to the disk baryon surface density gives a scale length within 17% of the theoretical value. Runs without feedback, with or without star formation, exhibit the drastic angular momentum transport observed elsewhere. Subject headings: galaxies: formation, hydrodynamics, methods: N-body simulations
منابع مشابه
Implementing Feedback in Simulations of Galaxy Formation: a Survey of Methods
We present a detailed investigation of a number of different approaches to modelling feedback in simulations of galaxy formation. Gas-dynamic forces are evaluated using Smoothed Particle Hydrodynamics (SPH). Star formation and supernova feedback are included using a three parameter model which determines the star formation rate (SFR) normalization, feedback energy and lifetime of feedback regio...
متن کاملMaximum feedback and dark matter profiles of dwarf galaxies
The observed rotation curves of dark matter-dominated dwarf galaxies indicate low-density cores, contrary to the predictions of CDM models. A possible solution of this problem involves stellar feedback. A strong baryonic wind driven by vigorous star formation can remove a large fraction of the gas, causing the dark matter to expand. Using both numerical and analytical techniques, we explore the...
متن کاملThe Angular Momentum Problem in Cosmological Simulations of Disk Galaxy Formation
We conduct a systematic study of the angular momentum problem in numerical simulations of disk galaxy formation. We investigate the role of numerical resolution using a semi-cosmological setup which combines an efficient use of the number of particles in an isolated halo while preserving the hierarchical build-up of the disk through the merging of clumps. We perform the same simulation varying ...
متن کاملThe Formation of a Realistic Disk Galaxy in Lambda Dominated Cosmologies
We simulate the formation of a realistic disk galaxy within the hierarchical scenario of structure formation and study its internal properties to the present epoch. We use a set of smoothed particle hydrodynamic (SPH) simulations, with a high dynamical range and force resolution, that include cooling, star formation, supernovae (SNe) feedback and a redshift-dependent UV background. We compare r...
متن کاملOn the Maximum Luminosity of Galaxies & Their Central Black Holes: Feedback from Momentum-driven Winds
We investigate large-scale galactic winds driven by momentum deposition. Momentum injection is provided by (1) radiation pressure produced by the continuum absorption and scattering of photons on dust grains and (2) supernovae (momentum injection by supernovae is important even if the supernovae energy is radiated away). Radiation can be produced by a starburst or AGN activity. We argue that mo...
متن کامل